Catalytic Converters

 Catalytic Converters

A catalytic converter is a vehicle emissions control device that converts toxic pollutants in exhaust gas to less toxic pollutants by catalyzing a redox reaction (oxidation or reduction). Catalytic converters are used with internal combustion engines fueled by either petrol (gasoline) or diesel—including lean-burn engines.

The first widespread introduction of catalytic converters was in the United States automobile market. Manufacturers of 1975 model year equipped gasoline-powered vehicles with catalytic converters to comply with the U.S. Environmental Protection Agency's stricter regulation of exhaust emissions.[1][2][3][4] These “two-way” converters combined carbon monoxide (CO) with unburned hydrocarbons (HC) to produce carbon dioxide (CO2) and water (H2O). In 1981, two-way catalytic converters were rendered obsolete by “three-way” converters that also reduce oxides of nitrogen (NOx);[1] however, two-way converters are still used for lean burn engines.

Although catalytic converters are most commonly applied to exhaust systems in automobiles, they are also used on electrical generators, forklifts, mining equipment, trucks, buses, locomotives and motorcycles. They are also used on some wood stoves to control emissions.[5] This is usually in response to government regulation, either through direct environmental regulation or through health and safety regulations.

  History of Catalytic Converters 

The catalytic converter was invented by Eugene Houdry, a French mechanical engineer and expert in catalytic oil refining,[6] who moved to the United States in 1930. When the results of early studies of smog in Los Angeles were published, Houdry became concerned about the role of smoke stack exhaust and automobile exhaust in air pollution and founded a company, Oxy-Catalyst. Houdry first developed catalytic converters for smoke stacks called "cats" for short. Then he developed catalytic converters for warehouse forklifts that used low grade non-leaded gasoline.[7] Then in the mid-1950s he began research to develop catalytic converters for gasoline engines used on cars. He was awarded United States Patent 2742437 for his work.[8]

Widespread adoption of catalytic converters didn't occur until more stringent emission control regulations forced the removal of the anti-knock agent tetraethyllead from most gasoline. Lead is a 'catalyst poison' and would effectively disable a catalytic converter by forming a coating on the catalyst's surface.[9]

Catalytic converters were further developed by a series of engineers including John J. Mooney and Carl D. Keith at the Engelhard Corporation,[10] creating the first production catalytic converter in 1973.[11]

Dr. William C. Pfefferle developed a catalytic combustor for gas turbines in the early 1970s, allowing combustion without significant formation of nitrogen oxides and carbon monoxide.[12][13


Two Way Catalytic Converters 

A two-way (or "oxidation") catalytic converter has two simultaneous tasks:

  1. Oxidation of carbon monoxide to carbon dioxide: 2CO + O2 → 2CO2
  2. Oxidation of hydrocarbons (unburnt and partially burnt fuel) to carbon dioxide and water: CxH2x+2 + [(3x+1)/2] O2 → xCO2 + (x+1) H2O (a combustion reaction)

This type of catalytic converter is widely used on diesel engines to reduce hydrocarbon and carbon monoxide emissions. They were also used on gasoline engines in American- and Canadian-market automobiles until 1981. Because of their inability to control oxides of nitrogen, they were superseded by three-way converters.


Three Way Catalytic Converters  

Three-way catalytic converters (TWC) have the additional advantage of controlling the emission of nitrogen oxides (NOx), in particular nitrous oxide, a greenhouse gas over three hundred times more potent than carbon dioxide,[16] a precursor to acid rain and currently the most ozone-depleting substance.[17] Technological improvements including three-way catalytic converters have led to motor vehicle nitrous oxide emissions in the US falling to 8.2% of anthropogenic nitrous oxide emissions in 2008, from a high of 17.77% in 1998.

Since 1981, "three-way" (oxidation-reduction) catalytic converters have been used in vehicle emission control systems in the United States and Canada; many other countries have also adopted stringent vehicle emission regulations that in effect require three-way converters on gasoline-powered vehicles. The reduction and oxidation catalysts are typically contained in a common housing, however in some instances they may be housed separately. A three-way catalytic converter has three simultaneous tasks:

  1. Reduction of nitrogen oxides to nitrogen and oxygen: 2NOx → xO2 + N2
  2. Oxidation of carbon monoxide to carbon dioxide: 2CO + O2 → 2CO2
  3. Oxidation of unburnt hydrocarbons (HC) to carbon dioxide and water: CxH2x+2 + [(3x+1)/2]O2 → xCO2 + (x+1)H2O.

These three reactions occur most efficiently when the catalytic converter receives exhaust from an engine running slightly above the stoichiometric point. For gasoline combustion, this is between 14.6 and 14.8 parts air to one part fuel, by weight. The ratio for Autogas (or liquefied petroleum gas (LPG)), natural gas and ethanol fuels is each slightly different, requiring modified fuel system settings when using those fuels. In general, engines fitted with 3-way catalytic converters are equipped with a computerized closed-loop feedback fuel injection system using one or more oxygen sensors, though early in the deployment of three-way converters, carburetors equipped for feedback mixture control were used.

Three-way convertors are effective when the engine is operated within a narrow band of air-fuel ratios near the stoichiometric point, such that the exhaust gas composition oscillates between rich (excess fuel) and lean (excess oxygen). Conversion efficiency falls very rapidly when the engine is operated outside of this band. Under lean engine operation, the exhaust contains excess oxygen, and the reduction of NOx is not favored. Under rich conditions, the excess fuel consumes all of the available oxygen prior to the catalyst, leaving only stored oxygen available for the oxidation function.

Closed-loop engine control systems are necessary for effective operation of three-way catalytic convertors, because of the continuous balancing required for effective NOx reduction and HC oxidation. The control system must prevent the NOx reduction catalyst from becoming fully oxidized, yet replenish the oxygen storage material so that its function as an oxidation catalyst is maintained.

Three-way catalytic converters can store oxygen from the exhaust gas stream, usually when the air–fuel ratio goes lean.[18] When sufficient oxygen is not available from the exhaust stream, the stored oxygen is released and consumed (see cerium(IV) oxide). A lack of sufficient oxygen occurs either when oxygen derived from NOx reduction is unavailable or when certain maneuvers such as hard acceleration enrich the mixture beyond the ability of the converter to supply oxygen.